Two Nucleon system and Nuclear forces : General nature of the force between nucleons, saturation of nuclear forces, charge independence and spin dependence, General forms of two nucleon interaction, Central, non-central and velocity dependent potential, Analysis of the ground state (3S1) of deuteron using a square well potential, range-depth relationship, excited states of deuteron, Discussion of the ground state of deuteron under non-central force, calculation of the electric quadrupole and magnetic dipole moments and the D-state admixture.
Nucleon-Nucleon Scattering and Potentials : Partial wave analysis of the neutron-proton scattering at low energy assuming central potential with square well shape, concept of scattering length, coherent scattering of neutrons by protons in (ortho and para), hydrogen molecule, conclusions of these analysis regarding scattering lengths, range and depth of the potential, the effective range theory (in neutron-proton scattering) and the shape independence of nuclear potential.
Interaction of radiation and charged particle with matter (No derivation) : Law of absorption and attenuation coefficient, photoelectric effect, Compton scattering, pair production; Klein-Nishijima cross-sections for polarized and unpolarized radiation, angular distribution of scattered photon and electrons, Energy loss of charged particles due to ionization, Bremstrahlung energy target and projectile dependence of all three processes, Range-energy curves, Straggling.
Experimental Techniques : Gas filled counters, Scintillation counter, Cerenkov counters, Solid state detectors, Surface barrier detectors, Electronic circuits used with typical nuclear detector, Multiwire proportion chambers, Nuclear emulsions, techniques of measurement and analysis of tracks; Proton synchrotron, Linear accelerators, Acceleration of heavy ions.