Quantum Physics

Paper Code: 
PHY501
Credits: 
03
Contact Hours: 
45.00
Max. Marks: 
100.00
Objective: 
This paper aims to develop the basic knowledge of  quantum mechanics and its application to various problems. It also deals with the techniques of wave mechanics like Schrödinger equation and its solution, angular momentum and spin.
 
9.00
Unit I: 
Introduction to Wave mechanics
Duality of radiation and matter, De broglie’s hypothesis, justification for the relation, Experimental confirmation of l = h/p (Davission and Germer experiment).
Uncertainty principle relating to position and momentum, relating to energy and time, its applications to various quantum mechanical problems such as:
(i) Non-existence of electrons in nucleus
(ii) Ground state energy of H-atom
(iii) Ground state energy of Harmonic oscillator
(iv) Natural width of spectral line
Schrodinger equation:
Wave function and its interpretation, Schrödinger time dependent and time independent one-dimensional equation, three-dimensional  Schrödinger wave equation, probability current density, physical meaning of  ψ, conditions to be satisfied by  ψ.
 
9.00
Unit II: 
Operator formulation in Quantum mechanics
Operators, algebra of operators, commutative property, linear operators, Commutator operator, eigen values and eigen functions, operators for momentum, K.E., Hamiltonian, total energy and angular momentum, Fundamental postulates of Q.M.
Hermitian operators, orthonormality, degeneracy, Commutation relations, Ehrenfest’s theorem, Bohr’s principle of complementarity, principle of superposition.
 
8.00
Unit III: 
UNIT III
Simple solutions of Schrödinger equation:                                                
Boundary  and continuity conditions on the wave function. Particle in one dimensional box, eigen function and eigen values, discrete energy levels, generalization to 3-D and degeneracy of levels
 
Boundary value problems:
Step potential, Penetration through rectangular barrier, calculation of reflection and transmission coefficients. Quantum mechanical  tunneling. Square well potential problem, reflection and transmission coefficient and resonant scattering.
 
9.00
Unit IV: 
UNIT IV
Simple harmonic oscillator (1-D Case): Schrödinger equation and its solutions, eigen function, energy eigen values. Zero point energy, parity, symmetric and anti-symmetric wave functions with graphical representation.
 Rigid rotator: Schrodinger equation and its solution.
 
10.00
Unit V: 
Angular Momentum
Introduction: orbital angular momentum,Operators for its Cartesian components, commutation relations, mutual as well as with L2 ,L+ and L- operators , their interpretation as step operators, eigen values of Lz, Total angular momentum operators, commutation relations obeyed by the components of generalized momentum operator. Commutation relation of  Jz with J+ and J- , J+ and J- ,commutation relation of J2 with J+ and J-.
 
Essential Readings: 
1. “Quantum mechanics” L.L. Schiff, Tata Mc Graw Hill.
2. “Quantum mechanics”, Chatwal and Anand, Himalaya Publishing House.
3. “Elementary Quantum Mechanics and Spectroscopy” Kakani, Hemrajani and Bansal, College Book House Jaipur.
 
 
 
References: 
1. “Introduction to Modern Physics”,H.S. Mani and G.K. Mehta, East West Press Pvt. Ltd., New Delhi.
2. “Quantum Mechanics”, S.P. Singh, M.K. Bagde and Kamal Singh,S. Chand & Co.
3. “Quantum Mechanics”, A Listair, I M Rac, ELBS (low price edition).
4. “Quantum Mechanics”, S.N.Biswas, Books & Allied,Calcutta (P) Ltd.
5. “Perspectives of Modern physics”, A.Beiser, Mc Graw Hill.
6. “Problems on Quantum Mechanics”, Dr. S.L.Kakani, Arihant Publishing House.
Academic Year: