Fundamentals of many-electron System: Hartree-Fock Theory (12)
The basic Hamiltonian in a solid: electronic and ionic parts, the adiabatic approximation;
Single-particle approximation of the many-electron system; single product and determinantal wave functions, Occupation number representation; matrix elements of one and two-particle operators; The Hartree-Fock (H-F) method; the one electron H-F equation; exchange interaction and Fermi hole; Coulomb correlation; the H-F ground state energy.
The interacting free-electron gas: Quasi electrons and Plasmons (12)
The interacting electron gas; The coulomb interaction; The Hartree-Fock approximation for the electron gas; Exchange Hole; Screeming, Plasmons; Quasi-electrons; The dielectric constant of the electron gas
Spin-spin interaction: Magnons (12)
Absence of magnetism in classical statistics; Origin of the exchange interaction; Direct exchange, super exchange, indirect exchange and itinerant exchange; Spin-waves in ferromagnets-magnons, spontaneous magnetization, thermodynamics of magnons; Spinwaves in lattices with a basis-ferri- and antiferromagnetism; Measurement of magnon spectrum; Ordered magnetism of valence and conduction electrons, Stoner’s criterion for metallic ferromagnet
Density Functional Theory (12)
Basics of DFT, Comparison with conventional wave function approach, Hohenberg-Kohn Theorem; Kohn-Sham Equation; Thomas-Fermi approximation and beyond: LDA and GGA; Application of DFT in a many body calculation and its reliability.
Experimental techniques (12)
Basic ideas of the techniques of field emission, scanning tunneling and atomic force
microscopy, scanning electron microscopy, transmission electron microscopy, X-ray
diffraction line broadening, small angle X-ray scattering and small angle neutron scattering; Ultraviolet–visible spectroscopy
2 O. Madelung: Introduction to Solid State Theory; Springer
3. D.Pines and P. Nozier: The Theory of Quantum Liquids; Perseus Books Publishing LLC
4. W.A. Harison : Pseudopotentials in the Theory of Metals, Benjamin
5. Norman Henry March, W. H. Young, S. Sampanthar- Many Body Problem; cambridge university press
7. Ech. Steinhardt and Ostulond: Physics of quasi crystals.
8. Neil W. Aschoft & N. David Mermin : Solid State Physics, Harcourt Publishers (1976)
9. Gerald Burns: Solid State Physics, Academic Press (1985).
10. Wlater A. Harrison: Solid State Physics, Dover Publication (1980).
11. Harald Ibach and Hans Luth: Solid State Physics: An introduction to Principles of
Materials Science, Springer (2003).
12. F. Seitz and D.Tumbull (Eds.): Solid State Physics, Advances in research and
applications, supplement 3: A.A. Maraduddin, E.W. Montrol and G.H. Weiss: Theory of
lattice dynamics in harmonic approximation : Academic Press (1963).
13. Callaway: Quantum Theory of Solids Part A & B, Academic Press (1974).
14. M.P. Marder: Condensed Matter Physics, Wiley-Interscience (2000).
15. H.Ibach and H.Luth: An Introduction of Theory and Experiments- Solid State Physics, Narosa (1991).
16. Edo M. Yussouf: Lecture Notes in Physics, No. 283, Electronic band structure and its Applications, Springer – Vertag (1987).
17. D.Pines: Elementary Excitations in Solids; Perseus (1999)
18. N.H. March and M. Passinello: Collective Effects in Solids and Liquids.
19. J.M. Ziman: Principles of the Theory of Solids; Cambridge
20. C. Kittel : Quantum Theory of Solids
21. Richard M. Martin: Electronic Structure- Basic Theory and Practical Methods:
Cambridge (2004).
22. Jorge Kohanoff: Electronic Structure Calculations for Solids and Molecules, Cambridge (2006).
23. D.J. Singh & Lars Nordstrom: Plane waves, Psedopotentials and the LAPW method 2nd Ed. (2006).
24. User guide/manual of softwares: WIEN2K,VASP, Quantum Expresso, Abinit
25. J.H.Fendler; Nanoparticles and Nanostructured Films: Preparation, Characterization and Application